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The use of ab initio methods for accurate simulations of electronic, phononic and electron-phonon
properties of molecular materials such as organic crystals is a challenge that is often tackled step-
wise based on molecular properties calculated in gas phase and perturbatively treated parameters
relevant for solid phases. In contrast, in this work we report a full first-principles description of such
properties for the prototypical rubrene crystals. More specifically, we determine a Holstein-Peierls
type Hamiltonian for rubrene including local and nonlocal electron-phonon couplings. Thereby, a
recipe for circumventing the issue of numerical inaccuracies with low-frequency phonons is presented.
In addition, we study the phenyl group motion with a molecular dynamics approach.

I. INTRODUCTION

The scientific interest in organic semiconductors is con-
tinuously high and driven by many technological appli-
cations, where the molecular materials are employed in
organic transistors,1–5 organic light emitting diodes6–9,
photovoltaic applications10–13 and a variety of other elec-
tronic devices14–17. Thereby good charge transport prop-
erties of organic semiconductors is the key for their ef-
ficient application and a great effort is dedicated to im-
prove carrier mobilities by means of chemical and struc-
tural modifications of these organic materials. In this
process, theoretical input can provide guidelines towards
high mobilities of charge carriers and additional function-
ality of the organic semiconductors. The understanding
of several properties of these materials, however, remains
incomplete as charge transport usually shows very differ-
ent behaviour compared to conventional inorganic semi-
conductors. In addition, a complete quantitative charac-
terization of the properties of the organic materials re-
mains a challenge due to their complexity.

One of the prototypical materials studied frequently
is rubrene (5,6,11,12-tetraphenyltetracene) (see Fig. 1).
It often serves as model compound for experiments18–27

and simulations28–36, including advances in growth by
means of van der Waals epitaxy37, the detailed analysis
of defect formation38, or investigation of electron-phonon
coupling effects.27,39,40 Finally, rubrene has one of the
highest carrier mobilities, which can reach few tens of
cm2/Vs for holes.

On the theoretical side, rubrene has first been studied
as gas-phase molecules and later in solid state by means
of semi-empirical and higher-level approaches41,42. How-
ever, to date a full ab initio characterization of the elec-
tronic properties and electron-phonon coupling (includ-
ing Holstein and Peierls type of couplings) has not been
achieved, which might be due to the sizeable structure of
the rubrene unit cell consisting of 280 atoms and result-
ing in 840 vibrational modes. As an additional challenge,
we note that standard density-functional theory (DFT)

based methods have well-known difficulties with numer-
ical accuracy when describing low-frequency vibrations.
Here we present a full first-principles characterization of
rubrene crystals including all intra-molecular and inter-
molecular modes. We thereby demonstrate a practical
way to remove the problem of inaccuracies with low-
frequency modes and imaginary frequencies that often
occur in DFT-based methods. This enables their appli-
cation also for systems with a large number of atoms.

The paper is organized as follows. In Sect. II we in-
troduce theoretical and computational methods. Sect.
III contains the resulting electronic structure, vibrational
properties and electron-phonon couplings. Finally, we
analyze the phenyl-group motions and possible flipping
in a molecular dynamics (MD) study.

II. METHODOLOGY

A. Ab initio total energy approach

We perform density functional theory43 calculations of
rubrene in crystal geometry. Our unit cell consists of
four molecules of rubrene where pairs of molecules are
related by a screw operation and other rubrene pairs
by a non-primitive translation (see Fig. 1). Note that,
while being computationally more demanding, a large
unit cell has the advantage of weaker variations in the
smaller Brillouin zone. We start from the experimen-
tal coordinates20, and perform a conjugate gradient op-
timization to obtain relaxed atomic coordinates and lat-
tice constants of the crystal. For this relaxed unit cell,
we calculate electronic properties, phonon modes and fre-
quencies as well as electron-phonon coupling parameters.

All the simulations are performed with the Siesta
code.44,45 The calculations are done using the Lo-
cal Density Approximation (LDA) using the exchange-
correlation (XC) potential of Ceperley and Alder46 as
parametrized by Perdew and Zunger.47 It is known that
intermolecular bonding in molecular crystals and simi-
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FIG. 1: Perspective view to the rubrene unit cell with 4
molecules. The molecules are labeled (A-D).

lar systems is partly due to van der Waals interaction
which is only included in the homogenous limit in the
semi-local XC functionals such as LDA or GGA-type
functionals.48–50 Still, the LDA approach used here has
been shown to give reliable results for organic crystals51

which is also the case for rubrene (see below).

Separable, norm-conserving pseudopotentials of the
Troullier-Martins type52 in the Kleinman-Bylander
form,53 are used to describe the effect of the core elec-
trons. The basis sets in Siesta are strictly localized nu-
merical atomic orbitals. We have used a split-valence
double-ζ basis set including polarization functions, opti-
mized for the bulk structure of rubrene. The parameters
that define the basis are presented in Table I. Phonon
calculations are performed using a finite differences ap-
proach, as described in Section II B. Molecular dynamics
simulations are performed in the constant temperature
ensemble using a Nose-Hoover thermostat and a time
step of 0.5 fs.

B. Vibrations

1. Method I : direct diagonalization

For the simulation of the vibrational properties we cal-
culate the force-constant matrix by displacing individual
atoms along the Cartesian directions. The dynamical
matrix is defined with the Hessian of the DFT total en-

ergy according to

Diα,jβ ≡
1

√
mi
√
mj

∂2E

∂uiα∂ujβ
, (1)

where mi and mj are the masses of atoms i and j. uiα
and ujβ are the displacements of these atoms along the
Cartesian coordinates α and β, respectively. From New-
ton’s equations of motion, the force Fi on atom i upon
displacement by ui is given as Fi = − ∂E

∂ui
. By approxi-

mation, we take finite differences with positive and neg-
ative displacements such that the dynamical matrix is
calculated as

Diα,jβ =
1

√
mi
√
mj

∆Fiα
∆ujβ

.

The solution of the eigenvalue equation of the dynamical
matrix ∑

jβ

Diα,jβejβ = ω2eiα (2)

yields eigenvectors ep (mode index p) with the Cartesian
components epiα (for atom i) and phonon frequencies ωp.
The phonon normal modes ζp are calculated as

ζpiα =
1
√
mi

epiα. (3)

2. Method II : frozen phonons

In order to obtain the phonon frequencies to a suffi-
cient level of accuracy and minimize numerical inaccura-
cies (see below), we also employ an alternative method for
their calculation, which improves the results of the calcu-
lations for the low-frequency modes. We take a two-step
approach which involves the above direct diagonalization
as a first step. As a second step, we displace all atoms of
the crystal in the direction of the mode vectors ζp of the
given phonon mode p according to

upiα = uiα + λζpiα (4)

and re-calculate the total energies of the crystal with the
frozen phonon. We perform these calculations for every
normal mode for a set of different amplitudes λ and ob-
serve the change in energy E → E + ∆E(λ) which is
given by the quadratic form

∆E(λ) =
1

2

∑
iα,jβ

λepiαDiα,jβλe
p
jβ

=
1

2
ω2
pλ

2.

(5)

Given the relaxed ground state for λ = 0, this allows to
compute low-energy mode frequencies with better accu-
racy and without the problem of imaginary or negative
ones as will be analyzed in Section III.B. Note that for-
mally both approaches should give the same results if
numerical inaccuracies were not present.
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TABLE I: Parameters defining the basis sets for H and C, optimized for the rubrene crystal. rc is the cutoff radius of each of
the orbitals. V0 and ri are parameters which determine the confining potential for each shell (see Ref. 54). Q is a net charge
assigned to the atom in the solution of the free atom problem (see Ref. 54).

rc (Bohr) V0(Ry) ri (Bohr) Q(e)

s1ζ s2ζ p d1ζ d2ζ s p d s p d

H 7.50 1.85 4.75 - - 45.4 40.1 - 4.20 2.96 0.76857

C 6.50 2.86 8.50 2.95 3.70 39.4 95.7 62.5 3.61 4.31 0.66 0.074

C. Effective Holstein-Peierls Hamiltonian

Beyond the numerical calculation of electronic energy
bands and vibrational properties, we derive an effective
tight-binding model to parametrize electronic properties
and electron-phonon coupling interactions in rubrene.
Thereby we focus on the states derived from the HOMO
of rubrene, i.e. the valence band structure in the crys-
tal. Such material parameters are essential for simulating
p-type charge transport.

We use a Holstein-Peierls model with the Hamiltonian

H = Hel +Hph +Hel-ph, (6)

which consists of an electronic part, a phononic part and
a coupling part between electrons and phonons and ex-
plicitly reads

H =
∑
M,N

εMNa
†
MaN +

∑
Q=(q,p)

~ωQ
(
b†QbQ +

1

2

)
+
∑

Q,M,N

~ωQgQMN (b−Q + b†Q)a†MaN ,
(7)

with εMN the transfer integrals between HOMO states

M and N. aM (a†M ) and bQ(b†Q) are the annihilation (cre-

ation) operators for electrons and phonons, respectively.
Q is the coordinate of the phonon Q = (q, p) where p is
the mode index and q is the wave vector. This model ac-
counts both for intra-molecular (onsite/local) and inter-
molecular (non-local) electron-phonon interaction effects
by linear coupling to the phonon operators (see below).

The electronic Hamiltonian (first term in Eq. (7))
depends on the full set of transfer integrals εMN of
molecules M and N. Due to the high symmetry of the unit
cell, however, this set can be reduced such that the TB-
model of rubrene requires only few relevant transfer inte-
grals. According to the assignment of indices (A to D) to
the molecules in Fig. 2, the remaining symmetry-reduced
electronic transfer integrals are εAC, εAD, εAB, εAA±b,
and εAA±2b. Here, b indicates a lattice vector in vertical
direction and A+b denotes the orbital A in the neighbor
unit cell. In order to find an analytically tractable form
of the band structure, we simplify the Bloch-Hamitonian
by assuming negligible coupling between molecules A and
D (see results section), i.e. εAD = 0). Taking into ac-
count the remaining terms, the band energies in k-space

FIG. 2: Supercell of rubrene with definition of transfer inte-
grals. Rich colored (pale) molecules belong to the herringbone
plane in the foreground (background). The four molecules A
and C (foreground) and B and D (background) belong to a
unit cell. εAC, εAD, εAB, εAA+b are the four nearest-neighbor
transfer integrals and εAA+2b is a second neighbor transfer
integral along lattice vector b.

have the form

ε(k) = ε0 + 2 εAA+b cos (kyb) + 2 εAA+2b cos (2kyb)

± 4 εAC cos

(
kyb

2

)
cos

(
kzc

2

)
± 4 εAB cos

(
kyb

2

)
cos

(
kxa

2

)
.

(8)

Each of the four sign combinations (++,+−,−+,−−)
in the second and third line of Eq. (8) gives rise to a
band in the rubrene band structure. The set of transfer
integrals will be determined by a least-squares fit to the
ab initio band structure.
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D. Electron-phonon coupling in rubrene

The electron-phonon coupling constants gQMN ≡
gpMN (q) in the model are defined as the linear changes
of the electronic matrix elements εMN with the ampli-
tudes λ of the phonon normal mode p with wave vector
q and are calculated as

gpMN (q) =
1√

2~ω3
p(q)

∂εMN

∂λ
. (9)

In this definition, the coupling constants are dimension-
less and explicitly depend on the phonon wave vector q.
Note that a slightly different convention is used in a re-
cent review.55 Given the large supercell and the small
Brillouin zone, this wave vector dependence, if necessary,
can be captured by a simple model and does not need
to be calculated for the large amount of modes. We are
thus only interested in the ab initio fits for the (q = 0)
case, which effectively reduces the computational effort.

To simplify the notation in Eq. (9), we introduce the
dimensionless Holstein couplings constants according to

gp0 =
1√

2~ω3
p

(
∂ε0
∂λ

)
(10)

which are averaged over the 4 molecules in the unit cell.
Analogously, the non-local Peierls coupling constants

gpi =
1√

2~ω3
p

(
∂εi
∂λ

)
. (11)

are defined with i ∈ {AA ± b,AB,AC}. In consistency
with the neglect of the transfer interal εAD, we set the
corresponding coupling constant gAD = 0. For simi-
lar reasons, gAA+2b which is much smaller (next nearest
neighbor according to the lattice vector 2b) will not be
considered for simplicity.

In order to extract the full set of the above-defined
electron-phonon couplings with ab initio methods, we
perform DFT calculations in the frozen phonon geometry
(Eq. (3)). Clearly, it would be too a formidable task to
re-fit the band structure for all vibrations as was done
for the ground state (λ = 0). We therefore take another
route based on the Kohn-Sham Hamiltonian. We employ
a basis transformation from the atomic orbital basis used
in the Siesta calculations into the desired basis set of
molecular orbitals. The Kohn-Sham Hamiltonian Ĥ in
the basis of atomic orbitals is described as

Hµν = 〈ϕµ|Ĥ|ϕν〉

and the overlap matrix Sµν is

Sµν = 〈ϕµ|ϕν〉 .

The transition from the basis sets used in DFT and the
desired orthogonal TB-model, can be performed in two

steps. First, we project onto the molecular HOMO or-
bitals |ψHOMO

M 〉 known from gas-phase calculations

|ψHOMO
M 〉 =

∑
µ

aµM |ϕMµ 〉,

where the index M indicates the molecule on which the
HOMO orbital is located. |ϕMµ 〉 are the basis functions
associated to M and the coefficients aµM are easily ob-
tained from Siesta calculations of single molecules. This
allows expressing the Hamiltonian in the non-orthogonal
HOMO basis while neglecting other types of molecular
orbitals. This first step results in a Hamiltonian whose
matrix elements are given as

HMN = 〈ΨM |Ĥ|ΨN 〉

=
∑
µ,ν

a∗µMaνN 〈ϕMµ |Ĥ|ϕNν 〉

and

SMN = 〈ΨM |ΨN 〉 =
∑
µν

a∗µMaνN 〈ϕMµ |ϕNν 〉 (12)

is the molecular overlap matrix. Coupling of the HOMO
orbitals to other molecular states is neglected as we are
only interested in the parameters of the HOMO-derived
bands due to their energetic separation to other bands.

The second step is the orthogonalization of the molecu-
lar orbitals for which we chose the Löwdin orthogonaliza-
tion method56 with the overlap matrix (12). We generate
a new set of HOMO-like orbitals |Ψ′M 〉 from the given ini-
tial set of normalized but non-orthogonal wave functions
as

|Ψ′M 〉 = |ΨM 〉 −
1

2

∑
N

SMN |ΨN 〉.

This single step mixing can be repeated iteratively until
the wave functions are orthogonal to the sufficient de-
gree of accuracy. In the present case for the HOMO or-
bitals of rubrene, a single step of orthogonalization turns
out to be sufficient as already the first iteration leads
to negligibly small overlap matrices. This orthogonaliza-
tion procedure, applied for undisplaced phonons, leads
to the effective Hamiltonian Hel in Eq. (6). By applying
this approach for structures including the frozen-phonon
distortion, we determine, by finite differences, the lin-
ear changes in the transfer integrals and obtain the Hol-
stein and Peierls electron-phonon coupling constants in
(7). Consequently, this transformation yields the cou-

pling constants gQMN in the orthogonal molecular HOMO
basis.

III. RESULTS

A. Electronic band structure and transfer integrals

We first focus on the electronic properties of rubrene.
The DFT band structure together with the TB-model
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FIG. 3: Valence band structure of rubrene. Main frame:
Comparison of DFT results (red) and TB-band structure
(blue) obtained from fitting with Eq. (8). Upper inset: Com-
parison of different fit functions (see text). Lower inset: Bril-
louin zone and definition of special points.

fit of Eq. (8) are shown in the main frame of Fig. 3.
The fit to the band structure results in the transfer in-
tegrals compiled in Tab. II, which reproduce the DFT
band structure with good accuracy (rms deviation of 4.0
meV on a regular k-point grid). A comparison of the
fits with and without the second neighbor term εAA±2b
in b direction shows slightly better results when taking
this term into account (see inset of Fig. 3). This small
change is consistent with an order-of-magnitude smaller
value of εAA±2b compared to εAA±b. This additional pa-
rameter corrects the underestimation of the DFT-bands
in the ΓY -direction.

Very similar values for the transfer integrals are ob-
tained directly from the Kohn-Sham Hamiltonian (de-
scribed in Section II D) by using the Löwdin orthogonal-
ization of the HOMO bands. Both methods deviate by
only about 3− 4 meV and both sets of transfer integrals
are consistent with the experimental band dispersion in
the direction measured by ARPES experiments57,58 and
with theoretical calculations reported in literature29,59 as
is summarized in Tab II.

B. Vibrational properties

We turn to the calculation of the dynamical proper-
ties. By using Method I, we obtain all mode frequencies
and eigenvectors. A selected list of low-frequency modes
with ω(I) < 50 cm−1 summarized in Tab. III. It turns
out that for some of the modes the standard diagonal-
ization scheme leads to some unrealistic small or even
imaginary frequencies. This general problem is due to
residual numerical inaccuracies which may severely jeop-
ardize the further calculation of electron-phonon coupling
constants (Eqs. (10) and (11)), which requires division
by the frequency.

TABLE II: Transfer integrals and effective electron-phonon
coupling parameters EH, EP, ωH and ωP (see definition in
Sect. III C) of the present work in comparison to literature
values.

This work Ref. 29 Ref. 59

εAA+b (meV) 134.0 143 125

εAC (meV) 28.9 23 -6

εAB (meV) 4.1 - -

εAA+2b (meV) -10.7 - -

EH (meV) 106.8 159 99

EP (meV) 21.9 - 20

ωH (cm−1) 1208.9 1400 1277

ωP (cm−1) 117.9 50 77

The reason for this behaviour originates from slightly
noisy force constants that lead to the difficulties in the
description of collective crystal vibrations in soft mate-
rials like organic crystals. These vibrations involve the
motion of many atoms (at least for collective molecu-
lar modes such as libration modes or translations) which
means that many force constants enter in the resulting
vibrational frequency, as opposed to e.g. a CH-stretch
mode, where the force constant related to the CH bond
will mostly define the frequency. Considering that the
forces ∆Fiα for displaced atom i may have some small
numerical error, this error can accumulate in a quantity
like ωp that results essentially from all forces. If the mode
frequency is low, the relative error can then be very large
for such modes.

On the other hand, by inspecting all low-frequency
modes in rubrene, we find that they show correct vibra-
tion patterns (e.g. for translation and libration modes)
and are also orthogonal, which gives us confidence in the
mode vectors ζ in contrast to the vibration frequency.
Therefore we apply them as frozen modes in Method II
for the re-calculation of the mode frequencies ω(II) and
re-calculated the changes in the total energy ∆E around
the equilibrium configuration for different normal mode
amplitudes λ according to Eq. (5) for all vibrations.
Fig. 4 shows an example to illustrate the difference of
both methods for a particular mode (main frame). This
specific vibration is an Ag symmetric torsional mode of
the phenyl rings. The energy obtained from the direct
diagonalization of Diαjβ is ~ω(I) = 5.5 meV (44.4 cm−1),
while the quadratic fit to the total energy in Method
II yields the corrected mode energy ~ω(II) = 7.4 meV

(59.6 cm−1). This value is increased by about 34 % com-
pared to the original frequency and is a typical example
of the general behaviour of low-frequency modes. Table
III compares a larger set of low-frequency modes in the
two approaches and shows how strongly the frequencies
can be corrected by Method II. A full overview over all
modes (except the highest-frequency CH-stretch modes)
is provided in the inset of Fig. 4. In this figure we plot
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TABLE III: Phonon frequencies in both approaches (see text)
with symmetry assignment and mode description with abbre-
viations: translation (Taxis), rotation (Raxis), butterfly mode
(B), torsion (tor) and wagging (W) .

ω(I) (cm−1) ω(II) (cm−1) symm. mode descr.

-19.9 17.0 B2g R|| tetracene

0.06 16.4 B2u Ty + Bmolecule

0.08 21.8 B1g R⊥ tetracene

5.5 20.8 B1u Tz + Bphenyl

9.4 31.7 B1u Bmolecule

16.1 24.0 Au Tx + torphenyl

18.9 41.6 B3u Tx + torphenyl

21.4 41.6 B2g R⊥ tetracene + torphenyl

22.2 46.8 B2u Bmolecule

29.5 43.5 B1g R⊥ tetracene

30.1 37.7 Au Tx + Wphenyl

38.1 52.2 B2u Bmolecule

38.9 46.4 B1g R⊥ tetracene + Wphenyl

42.7 47.7 B1g R|| tetracene

44.4 59.6 Ag torphenyl

46.9 57.8 Ag torphenyl

47.4 60.3 B3u torphenyl

48.3 55.5 B2g R|| tetracene

48.5 49.0 B1u Ty

48.6 55.0 B1u Ty + Bmolecule
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FIG. 4: Main frame: Change of the total energy of the sys-
tem (per unit cell) with the amplitude of the phonon. Inset:
Relative frequency change and corresponding median value.

the relative frequency differences

∆ωrel =
ω(II) − ω(I)

ω(II)
.

Apparently, with Method II we obtain a trend towards
systematically higher energies especially for the low-
frequency modes which are corrected by up to 50 % (with
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FIG. 5: Illustration of the changes in the band structure
of rubrene with distorted geometry, namely without phonon
(red) and with phonon (black).

few exceptions of even higher values). The median value
for ∆ωrel is increased by 0.724 % indicating that the up-
per half of the frequency spectrum experiences only slight
changes. This indicates that mainly collective modes
are effected and should be corrected regarding their fre-
quency, whereas ω(I) ≈ ω(II) for high-frequency modes,
whose frequencies are described well by the initial diag-
onalization of the dynamical matrix. In the following
we will only use the corrected frequencies ω(II) for the
calculation of the electron-phonon coupling parameters.

C. Electron-phonon coupling

The calculation of the electron-phonon coupling in
rubrene is performed with the frozen phonon approach.
The effect of a specific mode ζp on the band structure is
visualized in Fig. 5. The HOMO bands are shifted pro-
portional to the amplitude λ. This example illustrates
the impact of a vibration of frequency 1593.3 cm−1, for
which we found a strong impact on the HOMO bands.
This mode is an intramolecular C–C stretch mode and
as such strongly changes the onsite energy. The changes
in the band structure for different amplitudes λ would
in principle enable the extraction of the electron-phonon
coupling constants from the linear slope of the changes in
the electronic energies (see e.g. inset of Fig. 5)60,61. In
the considered case, the averaged electron-phonon cou-
pling constant for the Γ point results in g1593.30 = 0.21.

The practical calculation of the electron-phonon cou-
plings of all phonon modes however is performed in the
way described in Sect. II D, which avoids manual fits to
the band structure for all modes. In order to present
an overview over the total strength of the Holstein and
Peierls coupling for all modes, we define the polaron bind-
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ing and its energy contributions EH and EP according to

EH =
∑
p

EpH =
∑
p

~ωp (gp0)
2

EP =
∑
p

EpP =
∑
p,i

~ωp (gpi )
2

where EpH and EpP are the mode-resolved Holstein (H) and
Peierls (P) contributions and EP consists of all Peierls-
coupling constants for all nearest neighbors of a specific
molecule.

The large number of electron-phonon coupling param-
eters is summarized in Fig. 6 by plotting EpH (red
bars) and EpP (blue bars). Although the majority of the
840 modes have vanishing electron-phonon coupling, we
identify a broad distribution of the remaining coupling
modes over the plotted frequency spectrum. Modes with
mainly non-local couplings dominate the low-frequency
part (< 150 cm−1) with EpP values of up to 5 meV from
strongly coupled B3g-modes. Local couplings dominate
the high-frequency part with a few strong coupling modes
around 1600 cm−1. This is consistent with gas-phase
molecule simulations where the largest values of EpH are
15.45 meV, 7.24 meV, and 3 meV for the vibrations at
1588 cm−1, 1007 cm−1 and 602 cm−1, respectively (green
bars in Fig. 6). We also observe at low energies that
the strong-coupling modes from gas-phase are splitted in
energy in the crystal phase and the distribution of the re-
spective electron-phonon coupling is strongly broadened.
A selected list is contained in Tab. IV and compared to
literature values.

From our results only inversion symmetric modes with
either the Ag or B3g symmetry contribute to gpH and af-
fect the onsite energies of the molecules. Our data sug-
gest that anti-symmetric modes in general play a sub-
ordinate role regarding electron-phonon interaction in
rubrene in accordance to general symmetry arguments.

TABLE IV: Comparison of electron-phonon coupling strength
for several phonon modes.

this work Ref. 59

ωp ωpg
p
0 ωpg

p
i ωp ωpg

p
0 ωpg

p
i

(cm−1) (meV) (meV) (cm−1) (meV) (meV)

57.8 -1.7 0.85 37.4 -0.9 3.4

59.6 1.4 -0.83 66.6 1.6 -6.6

89.0 1.6 -4.8 86.7 -0.6 -9.3

107.3 -0.14 2.8 106.3 0 -4.4

139.1 -2.3 -3.7 125.1 1.4 -4.7

639.1 -7.5 1.0 631.2 -10.8 1.3

1011.2 -3.6 -0.04 1002.3 24.6 0

1344.7 19.8 0.04 1348.6 49.9 0

1593.3 -42.0 -0.12 1593.8 -45.6 1.6

All coupling parameters are comparable to Ref. 59 (see
Tab. IV), i.e. most of the strongly coupled modes are in
agreement with the literature values. Only in the low-
frequency range, we observe some deviations between
the literature and our results for the electron-phonon
coupling constants. On the other hand, when compar-
ing the integral quantities EH and EP, including all 840
modes, to those derived in Ref. 59 in Tab. II, we find
rather good agreement. Despite the deviations of the
coupling strengths of single modes in the low-frequency
range, which might be explained by the different treat-
ment of the intermolecular interaction, the polaron bind-
ing energy and the lattice distortion coincides well with
Refs. 29 and 59. Further useful quantities for compari-
son with literature values are effective mode frequencies
either of Holstein type (ωH) or of Peierls type (ωP)

~ωH =

∑
p

(~ωpgp0)
2

EH

~ωP =

∑
p,i

(~ωpgpi )
2

EP
.

The larger effective Peierls mode frequency ωP is a re-
sults from the observed difference of our low-frequency
electron-phonon coupling constants and the reference val-
ues. From the given mode patterns of relevant modes,
we observe that the inter-molecular electron-phonon cou-
pling is associated with the motion of the phenyl rings.
In particular, modes with torsion of the phenyl rings con-
tribute here (e.g. mode from fig. 4 with ωp=59.6 cm−1

with dimensionless coupling constants of gp0 = 0.19 and
gpAA±b = 0.12). On the other hand, phenyl ring wag-
ging (or flipping) modes that move perpendicular to the
tetracene plane, couple only weakly to the HOMO. The
impact of those flipping motions, which has been dis-
cussed in literature62 is investigated in the following sec-
tion.
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FIG. 7: Definition of the two angles between phenyl groups
perpendicular to the tetracene backbone plane in schematic
and perspective views.

D. Flipping motion of phenyl groups

In this section we analyze if the dynamics of the phenyl
groups may be stronger than suggested by the weak
electron-phonon coupling associated to these vibrations.
Motivated by the work of Kloc et al.62, we performed
MD simulations as described in Sect. II A. The authors
of Ref. 62 suggested a model where two phenyl groups
from the same side of rubrene change their positions rel-
ative to the tetracene backbone from above to below the
tetracene plane and vice versa. Indeed, phenyl groups are
very flexible and they vibrate around their equilibrium
positions which are either below and above the backbone
plane on each side due to mutual repulsion. We investi-
gate this situation by calculations with a supercell, which
is twice the original cell (i.e., consisting of 8 molecules of
rubrene). For one of the eight molecules in the supercell
we changed positions of the phenyl rings to the other side
of the tetracene backbone. We let the structure relax its
energy in the DFT simulations and observed that this
starting configuration is not a stable minimum. Indeed
the phenyl group moved back to their original position
of the undistorted crystal.

In order to analyze the impact of finite temperature on
the question of the phenyl group dynamics, we studied
their motions with MD simulations. We expected that
with increasing temperature the phenyl groups would vi-
brate so much that they would be able flip to the other
side of the tetracene plane. To analyze such events in
these simulation, we define the bonding angles α1 and
α2 according to Fig. 7 and follow the change of the an-
gles over time for various temperatures up to 500 K.

Figure 8 shows the dynamics of the phenyl groups
for the largest temperature and all eight molecules.
While the phenyl groups are vibrating strongly, there are
no changes in the sign of angles which would indicate
that the phenyl groups flipped to the other side of the
tetracene plane. The fact that we do not observe such
flipping even at such large temperature, suggests that
they are likely unable to cross the backbone plane at am-

0 500 1000 1500
0

20

40

60

an
gl

e 
(d

eg
) molecule 1

α
1

α
2

0 500 1000 1500
0

20

40

60
molecule 2

α
1

α
2

0 500 1000 1500
0

20

40

60

an
gl

e 
(d

eg
) molecule 3

α
1

α
2

0 500 1000 1500
0

20

40

60
molecule 4

α
1

α
2

0 500 1000 1500
0

20

40

60

an
gl

e 
(d

eg
) molecule 5

α
1

α
2

0 500 1000 1500
0

20

40

60
molecule 6

α
1

α
2

0 500 1000 1500
time (fs)

0

20

40

60

an
gl

e 
(d

eg
) molecule 6

α
1

α
2

0 500 1000 1500
time (fs)

0

20

40

60
molecule 8

α
1

α
2

FIG. 8: Phenyl group dynamics measured with angles α1 and
α2 at T=500 K.

TABLE V: Temperature dependent mean value and stan-
dard deviation of the angular difference αi averaged over each
molecule and each side i.

temperature (K) ᾱ (deg) σ(α) (deg)

100 25.6 3.0

200 25.3 4.3

300 24.9 5.4

500 25.8 7.6

bient temperatures (or below) in a comparable time. The
possible influence on transport properties conjectured in
Ref. 62 could therefore not be corroborated in our sim-
ulations.

For smaller temperatures, curves similar to Fig. 8 but
with weaker oscillations in the dynamics of α1 and α2

were obtained (not shown as plot), thus confirming the
qualitative results. The analysis of the average angles by
interpreting the MD trajectory as statistical ensemble
and averaging over α1 and α2, is summarized in Tab. V
for all temperatures. While the average angle is rather
independent of T , its standard deviation increases with
T and reaches 22% at 300 K. Finally, we note that we
do not discard that these flipping processes happen at
larger time scales, but we do not observe them in the
time scale of one picosecond, and we never found such
flipping configurations to be a (meta)stable minimum.

IV. CONCLUSIONS

A protocol for reliable but efficient calculations of ma-
terial parameters from DFT has been introduced and ap-
plied for rubrene. In particular, we have used DFT-based
methods to compute all relevant electronic, phononic
and electron-phonon interaction parameters of rubrene,



9

which serves as a prototype of a complex organic ma-
terial build from a molecular core and functional side
groups. More specifically, we have determined tight-
binding parameters for a Holstein-Peierls type Hamilto-
nian for electron-phonon coupling which is directly appli-
cable for charge transport modeling, or more generally
for studies of macroscopic material specific properties,
such as density of states, conductivity, carrier mobility,
etc. The comparison of the parameters with other work,
shows good agreement. The accurate treatment of elec-
trons and phonons in organic small-molecule systems to-
gether with sophisticated macro-scale simulations is the
basis for advancing the level of transport modeling in
these systems.63
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